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Abstract *. 

A method for the analysis of o-hydroxy polyunsaturated fatty acids (w-HPUFAs) in rat tissue homogenate, 
supplemented with NADPH and homo-y-linolenic acid [20:3(n - 6)], arachidonic acid [20:4(n - 6)], eicosapen- 
taenoic acid [20:5(n - 3)] or docosahexaenoic acid [22:6(n - 3)] as a substrate was developed. By ion analysis of 
chromatograms obtained with reversed-phase HPLC-thermospray MS, many o-HPUFAs corresponding to each 
precursor fatty acid could be characterized by the high intensity of the molecular ion (MH’) and quasimolecular 
ion (MNH:, MNa+), while other common HPUFAs were characterized by the high intensity of the base ion of 
MH+ - H,O. On a selected-ion monitoring chromatogram of rat brain homogenate, significant amounts of 
o-HPUFA from each precursor fatty acid, especially from 22:6(n - 3), were detected compared with the amounts 
found in rat large intestine homogenate. Based on these results, a highly active NADPH-dependent o-oxidation 
system is suggested for rat brain homogenate resulting in extensive oxidation of 22:6(n - 3). 

1. Introduction 

Cytochrome P-450 dependent monooxygen- 
ases metabolize arachidonic acid [20:4(n - 6)] to 
several products such as epoxy eicosatrienoic 
acids (EpETriEs) [1,2] and hydroxy eicosatet- 
raenoic acids (HETEs) including 16-, 17-, 1%, 
19- and 20-HETEs [3-61. These EpETriEs and 
w-hydroxylated HETEs such as w-, (w-l)- and 
(o-2)-HETE do not have conjugated double 
bonds, and thus the highly selective detection of 
these compound by HPLC with UV detection is 
difficult. Although GC-MS of o-HETE sepa- 

* Corresponding author. 

rated by an HPLC method with radioactive 
detection is the most reliable method at present 
[7-91, an ion characteristic for only w-HETE has 
not been found on the MS pattern. Consequent- 
ly, the selective detection of w-HETE overlap- 
ping with other HETEs by selected-ion moni- 
toring (SIM) is impossible. 

C$ochrome P-450 dependent monooxygen- 
ases metabolize homo-y-linolenic acid [20:3(n - 

611, eicosapentaenoic acid [20:5(n - 3)] or 
docosahexaenoic acid [22:6(n - 3)] to several 
products such as epoxy polyunsaturated fatty 
acids (EpPUFAs) [lo] and w-hydroxy polyun- 
saturated fatty acid (o-HPUFA) [9,11]. o- 
HPUFA derived from 20:5(n - 3) or 22:6(n - 3) 
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by cytochrome P-450 dependent monooxygen- 
ases could not be found in significant amounts 
as compared with w-HETE derived from 20:4 

(n - 6) [91. 
We have developed a method for the simulta- 

neous detection of w-HPUFAs corresponding to 
each precursor fatty acid in rat tissue homoge- 
nates by HPLC-thermospray(TSP) MS. The 
features of the o-oxidation system in rat brain 
homogenate were determined. 

2. Experimental ’ 

2.1. Standards and reagents 

(5Z, 8Z, llZ, 14Z)-20-Hydroxy eicosatet- 
raenoic acid (o-HETE) and 20:5(n - 3) were 
obtained from Cascade Biochem (Reading, 
UK). 12(S)-[5,6,8,9,11,12,14,15-*H,]-HETE 
[12(S)-HETE-d,] was obtained from Cayman 
Chemical Co. (Ann Arbor, MI, USA). 
(*)14,15-Epoxy eicosatrienoic acid-d, (14,15- 
EpETriE-d,) was obtained from Biomol Lab- 
oratories (Plymouth Meeting, PA, USA); 
20:3(n - 6), 20:4(n - 6) and 22:6(n - 3) were 
obtained from Nu-Chek Prep. (Elysian, MN, 
USA). p-NADPH was obtained from Oriental 
Yeast Co. (Osaka, Japan). Other solvents and 
reagents were of analytical-reagent grade. 

large intestine (2 g) were immediately excised at 
low temperature. The tissue was cut into pieces 
(cu. 2 X 2 mm) and washed twice by decantation 
with 5 ml of 8.5 g/l sodium chloride. The pieces 
were suspended in 20 ml of 50 mM Tris-HCl 
buffer (pH 7.5) and homogenized in a Polytron 
(Kinematica, Switzerland) homogenizer. 
Aliquots of 20:3(n - 6), 20:4(n - 6), 20:5(n - 3) 
or 22:6(n - 3) containing cu. 600 nmol in etha- 
nol, were evaporated to dryness in incubation 
tubes under reduced pressure. To the dry’ res- 
idue, rat brain or intestine homogenate (5 ml 
each) and /3-NADPH (4.6 mg) were added, and 
the mixture was homogenized in a vortex-mixer 
to disperse the substrate. Each mixture was 
incubated at 37°C for 30 min under aerobic 
conditions in a shaker operated at 120 rpm. The 
incubation mixture was acidified to cu. pH 3 with 
15% formic acid, 12(S)-HETE-d, or 14, 15- 
EpETriE-d, was added as the internal standard, 
and the system was extracted twice with ethyl 
acetate. The ethyl acetate layer was washed with 
water until the aqueous layer had a pH of cu. 4, 
dried under anhydrous sodium sulfate for 5 min 
and filtered with No. 5A filter paper (Toyo 
Roshi, Tokyo, Japan). The filtrate was evapo- 
rated to dryness under reduced pressure. The 
residue was dissolved in 200~~1 of acetonitrile 
and 20-~1 aliquots were subjected to HPLC- 
TSP-MS. 

2.2. Extraction from rat tissue homogenate 2.3. HPLC-TSP-MS 

A male Wistar rat (400 g, 11 month old) was 
killed by decapitation, and the brain (2 g) and 

1 Abbreviations: arachidonic acid [20:4(n - 6)], epoxy 
eicosatrienoic acid (EpETriE), hydroxy eicosatetraenoic 
acid (HETE), selected-ion monitoring (SIM), homo-y- 
linolenic acid [20:3(n - 6)], eicosapentaenoic acid [20:.5(n - 
3)], docosahexaenoic acid [22:6(n - 3)], epoxy polyunsatu- 
rated fatty acid (EpPUFA), o-hydroxy polyunsaturated 
fatty acid (w-HPUFA), thermospray (TSP), ‘H, (d,), 
dihydroxy eicosatetraenoic acid (DiHETE), epoxy 
eicosatetraenoic acid (EpETE), hydroxy eicosapentaenoic 
acid (HEPE), hydroxy eicosatrienoic acid (HETriE), hy- 
droxy docosahexaenoic acid (HDHE) , epoxy eicosadienoic 
acid (EpEDE), dihydroxy eicosatrienoic acid (DiHETriE), 
epoxy docosapentaenoic acid (EpDPE). 

A Shimadzu (Kyoto, Japan) LC-GC-MS-QP 
lOOOS, equipped with a Vestec (Houston, TX, 
USA) Model 750B HPLC-TSP-MS interface, a 
Shimadzu LC-9A-HPLC pump and a Rheodyne 
injector fitted with a 20+.1 loop, was used. RP- 
HPLC separation was carried out using a Nu- 
cleosil 100 5C,, column (5 pm particle size, 
150 x 4.6 mm I.D.; Macherey Nagel, Diiren, 
Germany), with a mobile phase of 0.1 M am- 
monium formate-0.1 M formic acid-acetonitrile 
(8:2:15 or 4:1:5, v/v) at a flow-rate of 1.0 ml/ 
min. TSP interface temperature was optimized 
for maximum detection sensitivity in the 
positive-ion mode under electron-beam-off con- 
ditions. The vaporizer control, vaporizer tip, 
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Fig. 1. SIM chromatograms of authentic o-HETE (ca. 3 
nmol). 0.1 M Ammonium formate-0.1 M formic acid-ace- 
tonitrile (8:2:15, v/v) was used as mobile phase. Other 
conditions as described in Experimental. The number in the 
upper right-hand comer of each chromatogram is the ion 
count. 

vapour, block and tip heater temperatures were 
maintained at 151, 263, 316, 344 and 343°C 
respectively. 

3. Results and discussion 

By ion analysis of chromatograms obtained 
with HPLC-TSP-MS, a w-HETE standard was 
characterized by the high intensity of the molec- 
;zNHyn (My+) and quasimolecular ion 

49 MNa ) as shown in Fig. 1. Other 

m/z 319 --- Ml-H~(Di~l, EWE) EM(tlEE, 

A %!__.5i,~~~&A/-_%_L.&-.__~ _---_.L 
23. 

ml2 336 --- tmH4-HplDi~). -1 ~~IHEPE, 

m/7. 311 --- ~-!i20Cl4,15-~iE-ddg) 22360.’ 

It 0 10 20 30 4b 
min 

common HETEs were characterized by the high 
intensity of the base ion of MH+ - H,O as 
described previously [lo]. 

SIM chromatograms of an extract from an 
incubation of 20:5(n - 3) added to rat brain 
homogenate with or without p-NADPH are 
shown in Fig. 2. On the basis of m/z 319, 301 or 
336 peak C in Fig. 2 was assigned to 20-hydroxy 
eicosapentaenoic acid (w-HEPE) by comparison 
with the chromatographic behaviour and the ion 
pattern characteristic of w-HETE. On the basis 
of m/z 301 or 319 peaks A and B were assigned 
to dihydroxy eicosatetraenoic acids (DiHETEs) 
resulting from hydrolysis of epoxy eicosatetra- 
enoic acids (EpETEs) as described previously 
[lo]. On the basis of m/z 301 or 336 peaks D, E, 
F and G were assigned to 18-HEPE, 15HEPE, 
12-HEPE and 17, WEpETE, respectively, as 
described previously [lo]. On the basis of 
m/z 311 peak H was the ionic peak of 14, 
15EpETriE-d, used as the internal standard. 
Addition of p-NADPH increased the amount of 
o-HEPE (peak C) and similarly addition of p- 
NADPH to an incubation mixture of the pre- 
cursor fatty acid added to rat brain homogenate 
increased the content of w-hydroxy eicosat- 
rienoic acid (w-HETriE), w-HETE or w-hy- 
droxy docosahexaenoic acid (w-HDHE) (data 
not shown). Rat brain homogenate would thus 
appear to express enzymic w-oxidative activity 
(i.e. cytochrome P-450 system). 

Fig. 2. SIM chromatograms of an extract from an incubation mixture of 20:5(n - 3) with rat brain homogenate with (panel II) or 
without (panel I) P-NADPH. 0.1 M Ammonium formate-0.1 M formic acid-acetonitrile (4:1:5, v/v) was used as mobile phase. 
Other conditions as described in Experimental. The number in the upper right-hand comer of each chromatogram is the ion 
count. 
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SIM chromatograms of an extract from an 
incubation mixture of 20:3(n - 6), 20:4(n - 6), 
20:5(n - 3) 22:6(n - 3) added to rat brain 
homogenate along with P-NADPH are shown in 
Fig. 3. On the basis of m/z 305, 323, 340 or 345 
peak C in Fig. 31 was assigned to o-HETriE by 
comparison with the chromatographic behaviour 
and the ion pattern characteristic for w-HETE or 
o-HEPE. The shoulder B of peak C can be 
regarded as (w-1)-HETriE by comparison with 
its chromatographic behaviour [3-51, but addi- 
tional analysis was not performed. On the basis 
of mlz 305 or 323 peak A was assigned to 
dihydroxy eicosadienoic acids derived from hy- 
drolysis of epoxy eicosadienoic acids (EpEDEs) 
as described previously [lo]. On the basis of m/z 
305 or 345 peaks D, E, F and G were assigned to 
isomers of HETriE as described previously [lo]. 
On the basis of m/z 323, 340 or 345 peaks H, I 
and J were assigned to 14, 15-EpEDE, 11, 12- 

EpEDE and 8,9-EpEDE, respectively, as shown 
previously [lo]. 

On the basis of mlz 303, 321, 338 or 343 peak 
E in Fig. 311 was assigned to w-HETE by 
comparison with the chromatographic behaviour 
and the ion pattern characteristic of authentic 
o-HETE (Fig. 1) described above. Peak F can 
be regarded as (w-2)-HETE by comparison with 
its chromatographic behaviour [3-51 and by the 
high intensity of the base ion of MH+ - H,O, 
but no additional analysis was performed. On 
the basis of m/z 303 or 321 peaks A, B, C and D 
were assigned to 14, 15-dihydroxy eicosatrienoic 
acid (14, 15-DiHETriE), 11, lZDiHETriE, 8, 
9-DiHETriE and 5, 6-DiHETriE respectively, as 
described previously [lo]. On the basis of m/z 
303 or 343 peaks G, H, I and J were assigned to 
15-HETE, ll-HETE, 12-HETE and 9-HETE, 
respectively, as described previously [lo]. 

Peaks A, B, C, D, E, F and G in Fig. 3111 are 

m/r 345 --- MJ~WEXT~E. QEDEI 

C--- r------- 
0 10 10 - 

min 
III 
m/r 301 --- t4H-2Kp(DiHErE), M-H20(HFPE, EpmW i; 6040. 
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1743. 
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m/z 362 ---WCi4WUiE. m),qz 1667. 
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Fig. 3. SIM chromatograms of an extract from an incubation mixture of 20:3(n - 6) (panel I), 20:4(n - 6) (panel II), 20:5(n - 3) 
(panel III) or 22:6(n - 3) (panel IV) with rat brain homogenate with P-NADPH. 0.1 M Ammonium formate-0.1 M formic 
acid-acetonitrile (8:2:15, v/v) was used as mobile phase. Other conditions as described in Experimental. The number in the 
upper right-hand corner of each chromatogram is the ion count. 
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identical to the corresponding peaks in Fig. 2. 
The late emerging peak under m/z 301 in Fig. 
3111 and Fig. 2 shows a base-ion of m/z 279 and 
a sub-ion of m/z 301 as described previously 
[lo]. While this is assigned as a byproduct re- 
sulting from the organic solvents, identification 
and effective removal were not performed. 

On the basis of mlz 327, 345, 362 or 367 peak 
C in Fig. 31V was assigned to o-HDHE by 
comparison with chromatographic behaviour and 
the ion pattern characteristic of w-HETriE, w- 
HETE or w-HEPE as described above. The 
shoulder B of peak C on m/z 327 can be 
regarded to be due to (w-l)-HDHE by com- 
parison with its chromatographic behaviour and 
by the high intensity of the base ion of MH’- 
H,O, but additional analysis was not done. 
Peaks A, D, E, F, G, H, I, J, K and L were 
assigned to dihydroxy docosapentaenoic acids 
resulting from hydrolysis of epoxy docosapen- 
taenoic acids (EpDPEs), 20-HDHE, 17-HDHE, 
14-HDHE, ll-HDHE, 4-HDHE, 19,20-EpDPE, 
13, lCEpDPE, 10, ll-EpDPE and 7,8-EpDPE, 
respectively, as described previously [lo]. 

shown in Table 1, the fatty acids of the n-3 
system, particularly 22:6(n - 3), were extensively 
converted to w-HPUFAs in rat brain homoge- 
nate compared with those of the n - 6 system. 
Rat brain homogenate expressed considerable 
o-hydroxylation activity compared with the rat 
large intestine homogenate. Rat brain thus ap- 
pears to exhibit high NADPH-dependent w-hy- 
droxylation activity, and this w-hydroxylation 
system may be the major metabolic pathway of 
22:6(n - 3) in rat brain. A low w-hydroxylation 
activity of decanoate in rat brain or intestine [12] 
and a low o-hydroxylation activity of 22:6(n - 3) 
in P-450 Ka-2 [9] have been demonstrated and 
thus, rat brain may possess a 22:6(n - 3) specific 
NADPH dependent w-hydroxylation enzyme. 

A standard curve for w-HETE is shown in Fig. 
4. When the sum of the peak areas corre- 
sponding to w-HETE on each SIM chromato- 
gram of MH+ - H,O, MH+, MNH: and MNa+ 
ion is compared with the sum of the peak areas 
corresponding to 12(S)-HETE-d, as the internal 
standard on each SIM chromatogram of MH+- 
H,O (m/z 311) and MNaC (m/z 351), an ap- 
proximately linear relationship exists between 
the peak area ratio [w-HETE/ 12(S)-HETE-d,] 
and the amount of o-HETE. Also for other 
o-HPUFAs such a relationship was found. As 

Previous studies have reported: The stimulat- 
ory effect of (w-l)-HETE on rat renal cortex 
microsomal Na+/K+-ATPase [13] and on vascu- 
lar activity in rat kidney [14], the effect of (w-2)- 
HETE on contraction activity of guineapig lung 
strips and relaxation activity of guinea pig ar- 
teries [15], as well as the effect of w-HETE on 
vasoactivity [4], inhibitor effect on rabbit renal 
medulla microsomal Na+ /K+-ATPase [8], 
stimulatory effect on erythropoietin-dependent 
stem cell growth in human bone marrow [16] and 
inhibitor effect on platelet aggregation [17]. 

The physiological activity of w-HDHE or w- 
HEPE is clearly of interest. 

4. Conclusions 

Since w-HPUFA was characterized by the high 
intensity of the molecular and quasimolecular 

Table 1 
Conversion of each precursor fatty acid to w-HPUFA using rat brain or rat large intestine homogenate 

Tissue homogenate Conversion of each precursor fatty acid to o-HPFUA( %)” 

20:3(n - 6) 20:4(n - 6) 20:5(n - 3) 22:6(n - 3) 

Rat brain 0.42 0.39 0.90 2.06 
Rat large intestine 0.08 0.06b 0.11 0.87 

“Percentage conversion determined from amount of o-HPUFA measured with 12(S)-HETE-d, as the internal standard and 
amount of precursor fatty acid. 

’ o-HETE was not detected, and thus percentage was determined as conversion to (o-2)-HETE. 
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Fig. 4. A standard curve of o-HETE. A fixed aliquot (304 
pmol) of 12(S)-HETE-d, as an internal standard was mixed 
with various known quantities of o-HETE from 31 to 312 
pmol, and analyzed by HPLC-TSP-MS in the SIM mode. 
The sum of the peak areas corresponding to o-HETE on 
each SIM chromatogram of MH’ - H,O, MH’, MNH: and 
MNa’ ion was compared with the sum of the peak areas 
corresponding to 12(S)-HETE-d, as the internal standard on 
each SIM chromatogram of MH’ - H,O (m/z 311) and 
MNa+ (m/z 351). 

ions (MH+, MNH: and MNa+) in HPLC-TSP- 
MS analysis, SIM chromatograms using these 
ions could be used to selectively detect o- 
HPUFA from other common HPUFAs. Signifi- 
cant amounts of o-HPUFA from each precursor 
fatty acid, especially from 22:6(n - 3) were de- 
tected in rat brain homogenate. Rat brain thus 
appears to exhibit a high NADPH-dependent 
w-hydroxlation activity, and this w-hydroxylation 
system may be the major metabolic pathway of 
22:6(n - 3) in rat brain. 
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